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The electronic structure of nanographene having open edges around its circumference crucially
depends on its edge shape. The circumference of an arbitrary shaped nanographene sheet is
described in terms of a combination of zigzag and armchair edges. According to theoretical
suggestions, nanographene has a non-bonding �-electron state (edge state) localized in zigzag
edges. This is reminiscent of the non-bonding � -electron state appearing in non-Kekulé-type
aromatic molecules. The localized spins of the edge states can give rise to unconventional
magnetism in nanographene such as carbon-only ferromagnetism, magnetic switching
phenomenon, spin glass state, etc. Nanographene can be prepared by heat-induced conversion
of nanodiamond particles. Nanographene ribbons are found by chance around step edges of
graphite. The detailed structures of individual nanographene ribbons thus found can be
characterized by resonance Raman experiments in which the graphitic G-band is used as a
fingerprint. A nanographene sheet inclined along a direction is found to show an interference
superperiodic pattern with a varying periodicity. The stacking of sheets also gives an
interference effect on the dislocation network created by rhombohedral stacking faults. STM/
STS investigations of well defined graphene edges which are hydrogen terminated in ultra-high
vacuum condition confirm the presence of edge states around zigzag edges in good agreement
with theoretical works. Armchair edges are generally long and defect free whereas zigzag edges
tend to be short and defective. This suggests that the armchair edge is energetically more stable
than the zigzag edge that has an edge state at the Fermi level. The feature of the edge state
depends on the detailed geometry of the edge structures. The edge state in a short zigzag edge
embedded between armchair edges becomes less localized due to state mixing with the adjacent
armchair edges. The intersheet interaction modifies the spatial distribution of the local density
of states of the edge states. The electrons in the edge state in a finite-length zigzag edge are
subjected to an electron confinement effect. Nanographene sheets are tailored by cutting along
the direction which is chosen intentionally for designing functionality. Well defined edges can
be prepared by chemical modifications with foreign atoms or functional groups. A combination
of an atomic-resolution electron lithography technique and chemical modifications of the
nanographene edges is expected to give nanographene-based molecular devices in the
development of nanotechnology. Recent works on the preparations structural and electronic
characterizations of graphene edges and nanographene are reviewed.
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1. Introduction

The discoveries of fullerenes and carbon nanotubes have contributed to enriching the
world of carbons, where these newcomers have opened a new realm bridging traditional
carbon and nanomaterials [1, 2]. Meanwhile, the sudden prominence of graphene
(single sheet graphite) [3–6] in condensed matter physics and electronics applications
has recently led us to recognize the importance of understanding graphite as a
fundamental issue in nanoscience and cutting-edge device applications in nanotechnol-
ogy. Indeed, current works [3–12] clarify unconventional electronic features of
graphene, which obey the Dirac equation with linear wavenumber dependence.
Interestingly, the feature of massless Dirac electrons has been successfully found using
a single layer or few-layer graphene prepared merely by cleaving bulk graphite flakes
[4, 5]. In addition, these have provided us with new basic issues of condensed matter
physics such as an unusual half-integer quantum Hall effect [3, 6, 9], quantum spin Hall
effect [7], quantum dots [12], etc.

Fullerenes, carbon nanotubes and graphene are categorized in nanocarbon-based
�-electron systems, which are distinguished from sp3-based nanocarbon systems having a
tetrahedral network such as nanodiamond.Nanographenewhichwe discuss in this review
is also involved in the family of nanocarbon-based �-electron systems and has features
essentially different from those of others. Actually nanographene, which is a nano-sized
flat hexagon network, is featured with the presence of open edges around its periphery, in
contrast to the absence of edges in ball-shaped fullerenes and an infinite network of
graphene, or the negligible contribution of edges in cylinder-shaped carbon nanotubes.

The presence of open edges gives nanographene electronic features entirely different
from those of other members in the family of nanocarbon-based �-electron systems.
The circumference of an arbitrary shaped nanographene sheet is described in terms of
a combination of zigzag and armchair edges, which correspond to trans- and
cis-polyacetylenes, respectively, as shown in figures 1(b) and (c). The electronic
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structure of nanographene depends crucially on the geometry of its edge shape.
According to theoretical suggestions [13–20], the presence of zigzag edges adds an extra-
electronic state to nanographene; that is, edge-inherited non-bonding �-state (edge
state) appears which is superposed upon the bonding �- and antibonding �*-states
around the Fermi level EF. The edge states localized around the zigzag edge region have
localized spins, which behave cooperatively with each other forming a magnetically
ordered state or a collective state with strong exchange interactions. Therefore, from the
magnetism aspects, the localized spins created in the edge states bring about
unconventional carbon-only magnetism having features different from traditional
magnets. Indeed, recent theoretical works suggest the appearance of ferromagnetism,
which varies depending on the structures of nanographene edges [21–24]. For example,
a strong ferromagnetic state in which spin polarization is uniformly distributed in space
is predicted in a nanographene ribbon with zigzag edge carbon atoms on the one edge
side and the other side being monohydrogenated and dehydrogenated, respectively. The
interaction between the edge-state spins and the conduction electrons is also suggested
to bring about unusual spin-dependent electron transport [25]. Experimental works
have also confirmed unconventional spin magnetism associated with the edge-state
spins [26–38], consistent with these theoretical suggestions. Ferromagnetism is created
in graphene sheets whose edges are hydrogen-terminated by proton irradiation [30–33],
in good agreement with the theory. The edge-state spins are found to form a spin glass
state in the disordered network of nanographite domains, through the conduction-
�-electron-mediated magnetic interaction [28, 29]. The edge-state spins also give novel
magnetic functions which have never been observed in existing magnetic materials.
Actually, the physisorption of guest molecules into nanographite-based nanoporous
carbon shows an interesting magnetic switching phenomenon which originates from the
guest-adsorption-induced mechanical compression of nanographite domains [34–36]. A
variation of guest species can control the performance of the magnetic switching effect.
Furthermore, the edge-state spins can be used as a probe for detecting host-guest
interactions [37, 38]. Using the edge-state spins as a probe, a huge condensation of
helium is observed in the nanopores of nanographite-based nanoporous carbons.

Figure 1. (a) Phenalenyl-free radical where up and down spins are placed on starred and unstarred sites,
respectively, (b) zigzag edge, (c) armchair edge, and (d) zigzag edge with its all edge-carbon atoms bonded to
one additional carbon atom that participates in the �-conjugated system. (b) and (d) are called ‘Fujita edge’
and ‘Klein edge’, respectively.
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For investigating the electronic states of nanographene in relation to its structure, it is
necessary to prepare nanographene sheets with well defined edge structures. There have
been reports on the preparations of nanographene sheets [8, 39–42]. Using silicon
carbide as a substrate, graphene thin films were prepared by deposition method [8]
or heat-induced conversion [42]. Heat-induced conversion of nanodiamond particles
was applied to prepare a single nanographene sheet on a graphitic substrate [40, 41].
Ribbon-shaped nanographene sheets (nanographene ribbons) are found around step
edges of graphite samples by chance [43].

The experimental effort for clarifying the features of the edge states in atomic
resolution is crucially important in understanding the relationship between the
electronic properties and the edge structures. Several works have been made along
this direction using scanning tunnelling microscopy (STM)/scanning tunnelling
spectroscopy (STS) experiments in ultra-high vacuum conditions with graphene edges
well defined by hydrogen-termination [44, 45]. These experiments clearly and
comprehensively revealed a variety of features in the edge states depending on the
details of the edge structures, in good agreement with theoretical results. Interestingly,
the electron confinement effect of edge states is observed in a short length of zigzag
edges embedded between armchair edges. The finiteness of the system brings about
interference effects on the electrons of nanographene sheets [46, 47]. The boundary
condition in the edge of nanographene gives a superperiodic pattern with a periodicity
varying along the direction, along which the sheet is inclined. The intersheet interaction
also participates in the interference effect.

In the present review article, recent works on the investigations of the edge-inherent
electronic structures of nanographene are comprehensively reviewed. Section 2 is
devoted to the theoretical background. The preparation and structural characteriza-
tions of nanographene are shown in Section 3. The interference and electron
confinement effects are discussed in Section 4. Section 5 deals with the electronic
structure of the edge states in relation to the details of the edge structures.
The conclusion is given in Section 6.

2. Theoretical basis of the electronic structure of nanographene

Most chemists know that the electronic structure of benzene is described with six
�-orbitals, which are split into three occupied bonding �-levels and three unoccupied
antibonding �*-levels located below and above the Fermi level EF, respectively, with a
finite HOMO-LUMO level splitting. Condensed polycyclic aromatic hydrocarbons
formed by the fusion of benzene rings also have similar electronic structures with the
number of �-orbitals and the HOMO-LUMO level splitting increasing and
decreasing, respectively, upon an increase in the number of associated benzene
rings. In the limit of an infinite size, a graphene sheet or two-dimensional (2D)
graphite has the electronic structure of zero-gap semiconductor featured with bonding
�- and antibonding �*-bands, which touch each other at EF with no HOMO-LUMO
splitting [48]. The group of these condensed polycyclic aromatic hydrocarbons
therefore has common electronic properties based on these �-orbitals. However,
among these, there is a sub-family of non-Kekulé aromatic molecules which
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particularly feature magnetism [49, 50]. A typical example is the phenalenyl free

radical consisting of three benzene rings fused, in which an unpaired electron having a

localized magnetic moment S¼ 1/2 exists as a consequence of the presence of a

non-bonding �-electron state at EF in addition to the �- and �*-levels as shown in

figure 1(a). In general, we can group all the carbon sites of a condensed polycyclic

aromatic hydrocarbon molecule into two subgroups, where the neighbouring sites

directly bonded to a site belonging a subgroup (subgroup A or starred) belong to

another subgroup (subgroup B or unstarred). According to Lieb’s theorem [51],

unpaired electrons are created when the numbers of sites belonging to these two

subgroups are different. Actually, the difference in the numbers between the starred

and unstarred sites corresponds to the number of unpaired electrons. In the case of

the phenalenyl free radical, the difference gives one localized spin S¼ 1/2. The issue of

starred and unstarred sites is the same in a bipartite lattice in the language of physics.

A similar idea is also applicable to a nano-sized graphene sheet. It should be noted

that the non-bonding state is distributed around the edge of the non-Kekulé

molecules [52], similar to the edge state in nanographene.
The circumference of a nanographene sheet having an arbitrary shape can be

described in terms of a combination of zigzag edges and armchair edges, which mimic

the structures of trans- and cis-polyacetylenes, respectively, as shown in figures 1(b)

and (c). According to theoretical predictions [13–16], zigzag edges give a non-bonding

�-electron state (edge state) of edge origin, whose energy level appears at the contact

point between the �- and �*-bands. Figure 2 is an example of the appearance of an edge

state localized around the zigzag edge region. It shows the difference in the spatial

distributions of the electron populations in nanographene sheets having armchair and

zigzag edges [13]. The edge state, which is assigned to the HOMO level in the figure,

has populations well localized around the zigzag edge region in the zigzag-edged

nanographene sheet (figure 2b), in contrast to uniformly distributed populations of the

Figure 2. The spatial distribution of the populations of the HOMO level for nanographene sheets with their
edges having (a) armchair and (b) zigzag structures [13].
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HOMO level in the graphene sheet with armchair edges (figure 2a). A large local density
of states (LDOS) in the edge region of the zigzag-edged nanographene sheet is
confirmed as a non-bonding edge state. Another example is a nanographene ribbon
having zigzag edges [15] shown in figure 3. The edge state of the nanographene ribbon is
localized around the zigzag edges and appears as a dispersionless state in the
wavenumber region from the Brillouin zone edge to 2/3� of the zone. The edge state,
which is completely localized in the Brillouin zone edge, becomes more delocalized as
the wavenumber approaches 2/3�, and finally becomes completely delocalized at 2/3�,
as shown in figures 3(a) and (b). The edge state is merged to the bonding �- and
antibonding �*-bands in the central region 0� k� 2/3�. The emergence of an edge
state has the same origin as that of the non-bonding state in non-Kekulé-type
aromatic molecules. From the language of physics, the edge state originates from the
symmetry breaking phenomenon of the Dirac electrons in the boundary condition at
zigzag edges [17]. Nanographene sheets with their edges being zigzag are not well
stabilized in energy compared with armchair-edged nanographene sheets, since the edge
state appears as a half-filled state at the Fermi level [13]. This is reminiscent of the
unstable structure of non-Kekulé aromatic molecules having a non-bonding � -state in
the energy gap [18, 19], in comparison with Kekulé molecules, in which resonance
gives a large HOMO-LUMO separation between the �-bonding and �*-antibonding
states.

Figure 3. (a) The wavenumber dependence of the populations of the edge state, (b) the energy dispersions of
a nanographene ribbon having zigzag edges with a width of 30 unit cells, (c) the density of states, and (d)
ferromagnetic spin arrangement at the zigzag edges. All the edge carbon atoms are terminated with hydrogen
atoms [15].
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The presence of the edge states, whose density of states has a sharp peak around
EF as shown in figure 3(c), gives rise to localized magnetic moments. Therefore,
nanographene is of particular interest from a magnetism viewpoint, where even
ferromagnetism happens to be created as exhibited in figure 3(d). Chemical
modification of zigzag edges with foreign species is predicted theoretically to give a
variation of this magnetism [21–24]. A zigzag-edged nanographene ribbon with all the
edge carbon atoms monohydrogenated on both sides of the ribbon has edge states
localized at the edges. This corresponds to the case shown in figure 3. A
monohydrogenated zigzag edge is called a Fujita edge. When all the edge carbon
atoms of the zigzag edge on one side of a zigzag-edged nanographene ribbon are
dihydrogenated with those on the opposite side remaining to be monohydrogenated, a
completely localized non-bonding state appears around EF, where all the carbon atoms
are spin polarized even in the interior of the nanographene ribbon as shown in figure 4.
This is an interesting carbon-only ferromagnetism, in which all the carbon atoms are
spin polarized ferromagnetically. The dihydrogenation of the zigzag-edge carbon atoms
creates a modified zigzag edge (a Klein edge) [21–24], whose structure is schematically
shown as a beard zigzag edge in figure 1(d). In contrast to hydrogenation,
fluorination of edges tends to suppress magnetism due to the tendency of forming a
closed shell in fluorine [23, 24]. In a zigzag-edged nanogapehene ribbon with one edge
side monofluorinated and the opposite side difluorinated, the spin polarization
can survive only around the edge region where the edge carbon atoms are
monofluorinated. An interesting example is the oxidation of carbon atoms on one
zigzag edge side. The monohydrogenated edge works as a magnetic edge while the
oxidized edge forms electron conduction paths [23, 24]. This means that the
chemical modification can play different roles to these two edges that are chemically
modified in different fashions.

These theoretical predictions therefore suggest that we can make a large variety of
magnetic nanosystems, which are expected to contribute to developing new types
of molecular spintronics/electronics devices on the basis of the magnetism of
nanographene.

Figure 4. Spin polarization of a zigzag-edged nanographene ribbon where all the edge carbon atoms on one
edge side are dihyrogenated with those on the opposite edge side being monohydrogenated. The large light
grey circles represent the densities of up-spins, while the small dark grey circles those of down-spins. (Ref. [23],
by courtesy of Prof. K. Kusakabe.)
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3. Preparation and structures of nanographene

3.1. Preparation of a nanographene sheet

Graphene sheets (a single sheet or a few layer sheet) can be prepared merely by cleaving
graphite crystals according to recent experiments [4–6]. Using silicon carbide as a
substrate, graphene thin films were prepared by deposition method [8] or heat-induced
conversion [42]. However, we need other technique for preparing a nanosized graphene
sheet (nanographene). The synthesis of nanographene ribbons grown from a SiC by arc
discharge has been reported. The nanographene ribbon thus prepared is bifurcated
along the c axis, forming a nano-Y junction [39]. According to previous work [40, 41],
heat-induced conversion of nanodiamond particles can give a single sheet of
nanographene. It has already been demonstrated that nanodiamond particles are
transformed to graphite by heat-treatment at 1600�C [53, 54]. Accordingly,
nanodiamond particles electrophoretically seeded on a substrate can be converted
to nanosized graphite without fusion if the inter-nanodiamond-particle distance can be
long enough to isolate individual particles from each other by controlling the
concentration of the nanoparticles in the controlled electrophoretic condition. Here,
we show the preparation of nanographene sheets using the heat-induced conversion of
nanodiamond particles.

Isolated nanodiamond particles with a mean size of 5 nm are deposited on a substrate
of highly oriented pyrolytic graphite (HOPG) by an electrophoretic technique in which
the electrode potential is adjusted to optimize the distribution of nanodiamond
particles. The nanodiamond particles seeded on the HOPG substrate are heated at
1600�C in a graphite furnace under argon gas atmosphere for 30min. The large area
STM topography shown in figure 5 reveals the presence of isolated nanographene
sheets on the surface of the HOPG substrate. The nanographene sheets have a circular
shape with a mean size of ca.10 nm. Figure 6 gives a detailed analysis of one
nanographene sheet observed in figure 5(b). The atomically resolved STM picture

Figure 5. STM images of nanographene sheets obtained after heat-treatment of nanodiamond particles
at 1600�C. (b) is a magnified image, whose lattice image is exhibited in figure 6(a) [41].
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(figure 6a) obtained from the surface of an isolated nanographene sheet clearly shows a

triangular pattern with a lattice constant of 0.25 nm characteristic of the graphite image.

The line-profile analysis in figure 6(b) shows that the height of observed particles is in

the range of 0.35–0.37 nm in all cases, which is considerably larger than the intersheet

distance of 0.3354 nm in bulk graphite. These findings demonstrate the formation of

a single sheet of nanographene. The number of carbon atoms involved in this

nanographene sheet is roughly estimated at N� 3000. From the viewpoint of organic

chemistry, this is the largest condensed polycyclic aromatic molecule ever having been

observed.
Nanodiamond particles when merely heated at 1600�C yield polyhedral nanographite

particles with a hollow inside [53, 54]. Therefore, it is surprising to observe a single flat

nanographene sheet instead of spherical or polyhedral graphite particles. A trace of

oxygen in the argon gas in the graphite furnace might react with the surface of a

nanodiamond particle, and consequently a part of the particle is oxidized during the

heat-treatment. In the case of the nanodiamond particles deposited on the HOPG

Figure 6. STM lattice image (a) and the line profile (b) of the single sheet of nanographene (figure 5b) on
a HOPG substrate. The line profile (b) is in the horizontal direction across the centre of the nanographene
sheet. The hexagon in (a) represents a benzene ring [41].
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substrate, the surface of the nanodiamond particle in contact with the HOPG surface is
more stable against the oxidation compared to the free exposed part. Also, the part in
contact with HOPG converts to graphite faster than the free part. The newly converted
graphite interacts with the flat HOPG substrate giving rise to the flat nanographene
sheets. This results in the formation of single sheets of nanographene. Here we compare
the atomic images between the nanographene sheet and the HOPG substrates for
characterizing the structural feature in detail. Both images are featured with the triangle
superlattice. The in-plane unit cell axes in nanographene sheets are found to be in the
same direction as those of the substrate, suggesting that nanographene sheets are placed
epitaxially on the substrate. The triangular lattice image is the consequence of the AB
stacking mode of nanographene sheet with the HOPG substrate. The elongated
intersheet distance 0.35–0.37 nm in comparison with that of bulk graphite (0.3354 nm)
leads to a weak interaction contributing to the unclear lattice image of the
nanographene sheet. From the observed distance between the nanographene sheet
and the substrate, the interaction (the interlayer resonance integral �1) becomes reduced
[55] by 26–50% when the interlayer distance is elongated from the bulk to 0.35–0.37 nm,
where �1¼ 0.39 eV for bulk graphite [48]. This is a desirable situation for investigating
the electronic structure of individual nanographene sheets since it is rather free from
the intersheet interaction.

3.2. Structural characterization of nanographene ribbons

Nanographene ribbons happen to be found by chance around the step edges of a
graphite surface. Next we discuss the structure of nanographene ribbons investigated by
a combination of atomic force microscopy (AFM) and resonance Raman experiments
of the graphite E2g2 mode, which is the signature of the graphitic structure [43]. The
Raman peak of the nanographene ribbons exhibits a dependence of its intensity on
the light polarization direction relative to the nanographene ribbon axis. This result is
due to the quantum confinement of the electrons in the 1D band structure of the
nanographene ribbons, combined with the anisotropy of the light absorption in 2D
graphite, in agreement with theoretical predictions [56]. We present a polarized Raman
study of nanographene ribbons thus found at HOPG step edges. The Raman peaks of
the nanographene ribbon and the HOPG are split due to different thermal expansions
of the ribbon and the substrate.

Figure 7(a) shows an AFM image, where many ribbons parallel to each other are
observed. The average width of the ribbons is 8 nm and the length can be as large as
1 mm. Figure 7(b) shows an AFM image where the presence of a ribbon near a step of
the HOPG substrate is evident. The ribbon is larger than 500 nm in length. The height
profile (figure 7c) shows a height of 0.35 nm, which corresponds exactly to the interlayer
distance of bulk graphite, indicating that the ribbon has only one sheet of atoms. The
Raman spectra were taken in the region of the sample where the ribbons depicted in
figure 7(a) were observed.

Figure 8(a) shows the Raman spectra obtained with different polarization directions
for the incident light with the laser excitation energy of Elaser¼ 2.41 eV. The
propagation of the incident light is perpendicular to the graphite plane and � is the
angle between the longitudinal direction of the ribbon and the light polarization ð ~PÞ
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Figure 8. (a) Raman spectra obtained for light incident with different polarization angles (�) with respect to
the nanographene ribbon direction. The inset shows a schematic figure of the sample (horizontal grey line)
showing the direction between the ribbon axis and the light polarization vector (P

!

). (b) Intensity of the
G1 peak versus �. The dotted line is a cos2 � theoretical curve. (c) Raman frequencies of the G2 (triangles)
and G1 (squares) peaks as a function of the laser power intensity. The laser energy for the excitation is
Elaser¼ 2.41 eV [43].

Figure 7. (a) AFM image of many nanographene ribbons parallel to each other. (b) AFM image of a
nanographene ribbon near a step edge. The arrow indicates the position of the ribbon for reference. (c) The
height profile obtained through the dotted line in (b) [43].
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(inset to figure 8a), where the information about the ribbon direction was obtained by

AFM (figure 7a). The observed Raman band is composed of two peaks (G1 and G2),

centred, respectively, at 1568 and 1579 cm–1. G2 is assigned to the G-band of the HOPG

substrate. G1 is ascribed to the G-band of a nanographene sheet as we will see next.

The intensity of the G1 peak decreases gradually according to the functional form of a

cos2� curve upon the increase in � as shown in figure 8(b). The angular dependence of

the Raman spectra shown in figures 8(a) and (b) can be explained by considering the

selection rules for light absorption in graphite and the quantum confinement in a 1D

nanographene ribbon. According to theoretical calculations for 2D graphene, the

probability of light absorption Wð ~kÞ per unit time is associated with the polarization

vector of incident light ~P¼ ðPx,PyÞ and with the wavevector ~k¼ ðkx, kyÞ of the electron
by [56]

Wð k
!
Þ /
jP
!
� k
!
j2

k2
, ð1Þ

where ~k is measured from the K point situated at the corner of the first Brillouin

zone. Equation (1) shows that the light absorption has a maximum for

electrons with a ~k vector perpendicular to the polarization of the incident light

ð ~PÞ and is zero for electrons with ~k parallel to ~P. This fact is not measurable in 2D

crystalline graphite because the density of electrons involved in the absorption

process is isotropic in the graphene plane, and no changes in the Raman intensity

can be observed by rotating the incident light polarization [56], as confirmed by the

absence of the angular dependence in the Raman G2 peak intensity of the HOPG

substrate. In the situation of nanographnene ribbons, the k dependence for the light

absorption process is important. The electronic structure of nanographene ribbons

is formed by 1D subbands due to the quantization of the k space in the transverse

ribbon direction. These 1D subbands are obtained by folding the dispersion curves

of 2D graphene along cutting lines [15, 16]. Therefore, the electronic density of

states (DOS) exhibits 1D van Hove singularities which depend on the width of a

nanographene ribbon [15–17, 57, 58].
Interestingly the Raman signal intensity from a nanographene ribbon is similar to

that from the HOPG substrate. This is possible by considering the quantum

confinement of the electronic states in the ribbon. The optical absorption process in

nanographene ribbons is associated with electronic transitions between the 1D valence

�- and conduction �*-subbands [59, 60]. The quantum confinement of the electrons in a

1D structure restricts the wavevectors ð ~kÞ of the electrons involved in the absorption

process that are associated with transitions between van Hove singularities in the

valence and conduction bands. The optical transition energies between van Hove

singularities are different for nanographnene ribbons with different widths. By scanning

the sample, the Raman signal from a particular nanographene ribbon is obtained when

the light spot reaches a ribbon that is in resonance with the energy of the laser

beam Elaser¼ 2.41 eV. When the photon energy of the incident laser is resonant with an

allowed transition between singularities in the 1D density of electronic states,

the Raman scattering cross-section diverges, and the intensity of the Raman peak
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is enhanced. This resonant mechanism selects the ~k vector of electrons and only those
perpendicular to the longitudinal ribbon direction are involved in the absorption
process. According to equation (1), we expect that Wð ~kÞ / cos2�, since the
light absorption probability is proportional to the square of the projection of
the polarization vector ð ~PÞ in the direction perpendicular to the longitudinal
ribbon direction. The experimental results shown in figures 8(a) and (b) are in excellent
agreement with theoretical predictions and allow us to conclude that the G1 peak is
indeed associated with the E2g2 vibrational mode of the nanographene ribbon.

Here it should be noted that the Raman spectra can distinguish a zigzag-edged
nanographene ribbon from an armchair-edged one [43]. An armchair nanographene
ribbon gives only the G-band. In contrast, a D-band, which is not observed in defect-
free regular graphene sheet, is expected to appear in a zigzag nanographene ribbon in
addition to the presence of a G-band. Therefore Raman experiments can be used for
characterizing the shape of a nanographene sheet. The experimental characterizations
of the edge structure will be a necessary task in the next step.

Finally, it is worth analysing the laser power dependent frequency shift of the G1

of nanographene depicted in figure 8(c). In fact, this shift is due to a thermal effect.
According to figure 8(c), the frequencies of G1 and G2 decrease with increasing laser
power, owing to the increase in the local temperature. However, the G1 frequency
decreases nonlinearly, whereas the G2 frequency exhibits only a small laser power
dependence. This is expected, since the Raman frequency of nanosized graphene
systems exhibits a stronger thermal dependence compared to bulk graphite [61–63].
The high thermal conduction coefficient in the graphene plane avoids the excessive
heating with the increase of the laser power density, keeping the lattice
parameters almost constant. However, in nano-size systems, the heat dissipation
is less efficient, and therefore the force constants are more affected, providing a
strong dependence of the Raman frequency on laser power density, as shown in
figure 8(c). It is interesting to emphasize that this thermal effect makes possible the
observation of a Raman signal from a nanographene ribbon sitting on a graphite
bulk substrate.

4. Interference phenomena of electrons on a graphene sheet

The nanosized structures of nanographene sheets are interesting targets for observing
interference phenomena in the 2D �-electron systems. In this section, we present
examples of the electron confinement effect observed on a nanographene sheet and at
the interface between graphene sheets and the substrate.

4.1. In-plane interference phenomenon and the electron confinement in an
inclined nanographene sheet

The first place is devoted to the interference of the �-electrons confined in a
nanographene sheet, which is investigated by the STM technique [46]. In figure 9(a) is
shown an STM image of a necktie-shaped nanographene sheet with a size of about
200 nm in width and>400 nm in length. The distance between the nanographene
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necktie and the HOPG substrate is over 0.8 nm, suggesting that it consists of a stacking
of two nanographene sheets, which interact weakly with the HOPG substrate. A unique
superperiodic pattern is observed on the nanographene sheet. Interestingly, the period
and the amplitude of the oscillations decrease from the top to the bottom along the
longitudinal direction of the nanographene necktie. The oscillation period is one order
of magnitude larger than that of the Moiré pattern due to stacking [64] and therefore
this possibility can be excluded. The oscillation period becomes longer and shorter by
placing a nanographene flake on the nanographene necktie in the upper and lower
regions from the flake, respectively, as shown in figure 9(b). Indeed, the oscillation
period becomes doubled in the upper region of the necktie after addition of the flake.
The oscillation below the flake seems to be only slightly modified by the flake. Such an
effect on the oscillations cannot be explained by some structural modulations, but is
an effect due to the interference of the electronic wavefunctions confined on the
nanographene surface. It should be noted that the nanographene sheet inclines along
its longitudinal direction with its top higher than the bottom with a slope of
�z/�y� 2� 10�4, according to the observation of the line profile, where the x, y and z
directions are defined as the long and short directions on the nanographene sheet, and
the direction perpendicular to the sheet, respectively. This suggests that the inclination
of the nanographene sheet should be responsible for the change of the periodicity in the
superperiodic pattern along the y-direction.

Here, the observed superperiodic pattern is theoretically understood as the
interference phenomenon of the �-electrons on the basis of the k � p method, in which
the kinetic energy of the graphitic �-electron has a linear k-dependence [48]. By
assuming a static electric potential �Fy which is proportional to the y-axis coordinate,
and a confinement effect due to the well-shaped potential within �d/2<x<d/2 (d is

0 250

0

250

0

250

(a) (b)

nm 0 250 nm

Figure 9. STM images of the superperiodic pattern on a necktie-shaped nanographene sheet on a HOPG
substrate (a) before and (b) after a nanographene flake is placed on it. The observations are carried out at the
bias voltage of V¼ 200mV and the current of I¼ 0.7 nA. The arrow in (b) denotes the position where the
nanographene flake is placed [46].
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the width of the nanographene along the x-direction), the Hamiltonian around the

K-point with the linear potential �Fy is given as [65, 66]

H ¼
�Fy �i�

@

@x
� �

@

@y

�i�
@

@x
þ �

@

@y
�Fy

0
BB@

1
CCA; ð2Þ

where � � ð
ffiffiffi
3
p
=2Þa�0, a is the bond length of the C–C bond in a graphene sheet, and �0

is the intra-sheet transfer integral [48] for the nearest neighbour carbon atoms. This

model is solved with a well potential Vwell(x) having an infinite depth. The Schrödinger

equation H�¼E� gives an oscillatory solution as given by the following equation:

� ¼ 2A

sin
Enx

�

� �
sin

1

�
~Eyþ

1

2
Fy2

� �� �

�i cos
Enx

�

� �
cos

1

�
~Eyþ

1

2
Fy2

� �� �
0
BB@

1
CCA; ð3Þ

where En¼ n��/d and ~E ¼ E� En: The electron density at the A-sublattice point is

calculated as

j AðRAÞj
2 ¼ 4A2 sin2

n�x

d

� �
1þ cos ðK� K0Þ � RA½ 	 sin

2

�
~Eyþ

1

2
Fy2

� �� �� 	
ð4Þ

where RA is the lattice point of the A sublattice, K and K0 are the K- and K0-points in the

wavenumber space. We pay particular attention to the long-period oscillating

component:

sin2
n�x

d

� �
constantþ sin

Fy2

�
�
2n�

d
y

� �� �
, ð5Þ

where E¼ 0 is taken at the Fermi energy. This functional form for the quantum number

n¼ 4 is plotted in figure 10 with the assumption of d¼ 1. The amplitude is spatially

constant, and the oscillation period becomes smaller as y becomes larger. This result of

the theoretical calculation can well reproduce the observed decrease of the oscillation

period shown in figure 9, although a uniform array for the standing wave would be the

result of the simplified theory and this is in contrast with the observations.
The observed peak positions of the electron density along the y-direction are plotted

in figure 11 in comparison with the theoretical results of equation (5) and of the free

electron model. The slight decrease found in the experiments cannot be reproduced by

the theoretical result from the k � p model, even though the decrease of the oscillation

period is in fair agreement with the experimental results. The fitting gives a parameter of

the potential gradient of F¼ 6.49� 10�3 eVnm�1. The total potential variation over the

distance 200 nm becomes 1.3 eV. Such a magnitude of the potential change can survive

against thermal lattice fluctuations and the superperiodic pattern can really exist
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in experiments. It should be noted that a similar analysis with the free electron model
gives the potential gradient three orders of magnitude smaller than that obtained by the
k � p model and is less than the thermal lattice fluctuations. This indicates the
importance of the k-linear energy dispersion of the �-electrons in the interference
phenomenon that is observed.

4.2. Interference at the interface between graphene sheets and the substrate

Interference phenomena can happen also in the direction perpendicular to the graphene
sheet [47]. This is related to the interference in the graphene sheets interacting at the

Figure 10. A 2D plot of the electron density calculated using the k�p method. The horizontal and vertical
axes are shown in arbitrary units. The quantum number 4 is taken for the standing wave within the infinite
well; –0.5< x<0.5 with d¼ 1. The numbers in the square box on the right denote the contour of the electron
density (arbitrary units) [46].

Figure 11. Comparison of plots of the amplitude vs peak position (parallel to the y-direction) in the electron
wave superperiodic patterns from the STM image (diamond), the free electron model (triangle), and the k � p
model (square) [46].
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interface with the substrate. Heat-treatment at ca.1600�C makes the surface of a HOPG
flake degraded, resulting in the creation of an interface between the HOPG flake and a

few graphene sheets that come off from the former. At the same time, dislocations are
created at the interface by the heat-treatment [47]. Figure 12 presents an STM image for

one of the typical examples showing a dislocation network pattern generated at the
interface. There is a step edge which divides the observed region into the upper right

and lower left subregions. According to the STM observation of the line profile, the
lower terrace in the lower left subregion has a thickness of two graphene sheets

(0.67
 0.2 nm), while the upper terrace in the upper right subregion has a thickness of

three sheets (0.39–0.41 nm above the lower terrace). The superperiodic pattern observed
clearly in figure 12(a) is associated with the dislocation network created in the interface

as observed in previous works of STM [67, 68] and TEM [69–71] experiments. The
diffraction pattern of the dislocation network is attributed to the modified local density

of states (LDOS) caused by rhombohedral stacking faults due to partial dislocations.
The partial dislocations are defined by the Burgers vector that converts an AB-stacked

sheet in ordinary graphite to an AC-stacked sheet with respect to a glide plane. The
conversion of stacking occurs abruptly accompanied with a lattice distortion where a

sharp-edged periodic pattern is generated. Interestingly, the superperiodic pattern on

the lower terrace is continuously connected to that on the upper terrace with no effect of
the step edge.

In figure 12(a), three regions are indicated; regions A, B, and C contain a

triangular-shaped pattern, a rhombic-shaped pattern, and a net-shaped pattern,
respectively. In the intermediate regions A–B and B–C, there are complicated

contrasts that are superimposed of the patterns in the two regions. In regions A
and B, the apparent height of lines which divide the patterns into individual

geometric units is lower than the centre of the unit by about 0.1 nm. Crossed
points of lines are further depressed from the lines by about 0.1 nm, resulting in

the ‘contracted nodes’ in the image. In region C, however, lines are imaged higher
than the centre of the unit by about 0.05 nm and crossed points of the lines are

the highest (about 0.005 nm higher than the lines), giving the ‘extended nodes’ in
the image. Except for the slight contrast, the patterns in regions B and C appear

to have contrast inverted from each other. Figure 12(b) is a magnified image near

a contracted node of the upper terrace in figure 12(a), which is marked by a
black dot, taken at Vs¼ 0.002V, I¼ 1.7 nA. A straight line drawn on triangular

lattice points at the bottom right part is extended to the valley sites of the
triangular lattice at the top left part, indicating the presence of a distortion at the

centre part of the image. This atomically resolved image supports the
identification that the observed patterns come from the dislocation-network

structure. As for patterns at higher bias voltages, figures 13(a)–(c) display images
of almost the same places as figure 12(a) at bias voltages of 0.3, 0.4, and 0.5V,

respectively. For clarity, the dependence of the height differences between two

points on the upper and lower terraces on the bias voltage are shown in figure
13(d). Just by increasing the bias voltage, the patterns on the upper terrace in

figure 13(a) are changed from a triangle-shaped pattern into a net-shaped one
which is similar to that on the lower terrace in figure 13(c). The net-shaped

pattern on the lower terrace remains unchanged not so obviously upon the
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Figure 12. (a) STM image (500� 500 nm2) of the superperiodic patterns at a low sample bias voltage of
0.02V, which are expected to reflect the density of states close to the Fermi level. A, B, and C denote the
regions of triangular-, rhombic-, and net-shaped patterns, respectively. Arrows indicate complicated patterns,
where two patterns are superimposed. Lines that divide the geometric patterns into individual units cross at
contracted nodes in regions A and B, and at extended nodes in region C. (b) Atomically resolved STM image
(6.0� 6.0 nm2) of one individual triangular pattern near a contracted node on the upper terrace in (a), which
is marked by a black dot, at Vs¼ 0.002V and I¼ 1.7 nA. A straight line placed on triangular lattice sites at the
bottom right part is extended to the valley sites of the triangular lattice at the top left part through a distorted
lattice part [47].
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elevation of the bias voltage, as shown in figures 13(a)–(c). Changes of

corrugation amplitudes with a maximum at Vs¼ 0.3V are observed in the
patterns on the lower terrace as shown in figure 13(d).

The experimental results shown in figures 12 and 13 demonstrate that the
superperiodic corrugation amplitudes of the observed patterns vary without any
change in the periodicity, depending on the overlayer height from the substrate and

the bias voltage of the STM. The continuity of the pattern at the step edge
indicates that the patterns observed on both terraces come from the same origin;
that is, the dislocation network at the interface that is extended over the wide

region including the step edge, since an array of faulted stacking is not changed
abruptly across the step edge. Here, it should be noted that the experimental results
cannot be explained merely by calculating the density of states of faulted stacking,

because the observed patterns at different terraces have contrasts inverted from
each other as shown in figures 12 and 13. We also cannot explain the property, on

Figure 13. STM images (500� 500 nm2) of superperiodic patterns at sample bias voltages; (a) Vs¼ 0.3V, (b)
Vs¼ 0.4V, and (c) Vs¼ 0.5V. By increasing the bias voltage, the corrugation amplitude of superperiodic
patterns on the upper terrace (upper right) decreases gradually [(a) and (b)] and change into a net pattern (c).
In contrast, no significant change is observed for the pattern on the lower terrace (lower left). The net pattern
appearing on the upper terrace of (c) is similar to that on the lower terrace. Height differences between two
points depicted in (a) are shown in (d) for clarifying the bias-dependent contrast. Solid and blank circles are
the height differences of the upper and lower terraces, respectively. Circles at the sample bias of around 0V
are the height differences at Vs¼ 0.02V [47].
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the basis of the faulted stacking, that the superperiodic corrugation amplitudes on

the lower terrace become larger although the gap between the tip and the sample

becomes larger when increasing the bias voltage from 0.02 to 0.3V as shown in

figure 13(d). In other words, the observed behaviour is considered to be due to the

LDOS at the surface, taking into account the fact that the observed corrugation

amplitudes become larger. Then, the LDOS should explain the gradual decreases of

the corrugation amplitudes and the variations of patterns on the upper terrace in

increasing the bias voltage without changing the periodicity of the patterns, and

that should also explain the increase of the corrugation amplitudes on the lower

terrace when increasing the bias voltage near the Fermi energy.
Here, we discuss the interference effect for explaining the bias-voltage dependence of

superperiodic patterns on the basis of a theoretical treatment reported in [64].

Considering the scattering potential at the interface, one can find that the LDOS at the

surface is related to the interference effect of the electrons that are scattered at

the surface and the interface between the overlayer and the substrate. The LDOS at the

surface can be given as sin2(kz) using coordinate z and a wavenumber k along the axis

normal to the surface (the z-axis) in the case that the lateral wavenumber of a

superperiodic pattern is nearly equal to 0 by comparison with the wavenumber

originating from the lattice. If one treats the scattering potential at the interface by

a perturbation, a beat can be generated by the interference between the perturbed and

the unperturbed waves. In this case, the LDOS at the surface is proportional to

sin(kz)cos(k0 z), where k0 and k are a perturbed wavenumber and an unperturbed

wavenumber, respectively.
Let us take a square-patterned potential with a periodicity of 2L at the interface

as shown in figure 14 for simplicity, in analysing theoretically the superperiodic

pattern, which is related to the probability density of the wavefunction confined in

the plane with a periodic abrupt potential change associated with the dislocation

network [47]. We place a square potential with L/3 in width and 4v0� (z) in height,

where L is the half of the periodicity of the square potential and v0 is the

strength of the scattering potential, at the line dividing the patterns into geometrical

units. Though the square-shaped pattern in the present model is different

from the experimental result (the rhombus-shaped pattern in regions B and C,

triangular-shaped pattern in region A), it can make a theoretical treatment easier

with any loss of validity. If we locate the surface and the interface positions at

l and 0, respectively, in the z-axis as shown in figure 14(c) and introduce a delta

function �(z) at the interface, this potential can be expressed using the Fourier

analysis

Vðx, y, zÞ ¼ �h2=m?

 �

�0
X
n

an�ðzÞ e
iqxnx þ e�iqxnx þ eiqyny þ e�iqyny


 �
, ð6Þ

where m? is the effective mass along the z axis, an is the nth component which equals

{2/(n�)}{sin(n�) – sin(5n�/6)} for the square potential, and qxn and qyn, which take

discrete values (n�/L)(n¼ 1, 2, . . .), are the components of the nth wavevectors in the

x- and y-axes, respectively. Assuming the linear combination of in-plane plane
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Figure 14. Model of the potential at the interface between the graphene overlayer and the HOPG substrate.
(a) The cross-sectional profile of square potential along the x- and y-axes. The periodicity is 2L and the
potential is (1/3)L in width and 2v0�(x) in height. (b) The projection of the square-patterned potential on the
xy plane. Grey lines represent potential lines and black squares represent potential nodes, whose potential
height is the sum of the 1D potentials in x- and y-axes. The height of the potential nodes is twice as large as
that of the potential lines. (c) The position of the surface and the interface along the z-axis. The surface and
the interface are located at l and 0 in the z axis, respectively [47].
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waves and wavefunctions Aqxqy(z) for the z component, the wavefunction is

represented to be

� x, y, zð Þ ¼
X
qx,qy

Aqx,qy zð Þe
i qxxþqyyð Þ: ð7Þ

Based on this wavefunction and the connecting condition derived from the

Schrödinger equation with the square patterned potential, the perturbed wavefunction

is given as

�
 x, y, zð Þ ¼ �0
X
n

½an= ik0ð Þ	 1� e2ikl

 �

eik
0z � eik

0zþ2ik0l

 �

� e
i qxn�xþqyn�yð Þ: ð8Þ

where the term of v20 is neglected because of its small contribution. For the unperturbed

wave, we take a plane wave in the direction of the z axis,

�0 ¼ eikz, k02 ¼ k2 � mjj=m?

 �

qn
�� ��2 ð9Þ

where m|| is the effective mass in the xy plane. Since the total wavefunction �total(x, y, z)

is the sum of �þ, ��, and �0, the probability density around the surface, |�total(x, y,

z)|2, is roughly expressed with an overlayer height from the substrate, l, the perturbed

wavenumber, k0, and the unperturbed wavenumber, k [47]:

�total x,y,zð Þ
�� ��2¼ ��X

n

ank sinðklÞ cosðk
0lÞ� cos qxn � xð Þ þ cos qyn � y


 � �
þ const, ð10Þ

where � and the second term are positive constants, and the second term has a

larger absolute value than the first term. In this equation, the spatially varied

probability density, which gives a superperiodic pattern, corresponds to the term

{cos(qxn x)þ cos(qyny)}. By attributing the unperturbed wave to the wavefunction in

bulk graphite, the energy dispersion can be given using parameter m?, the interlayer

distance c, and the interlayer resonance integral, �1 (¼0.39 eV) [72]:

E ¼
�h2k2

2m?ð Þ
� 2�1, m? ¼

�h2

2c2�1ð Þ
: ð11Þ

The investigation of the spatially varied LDOS is important in order to look over the

contrast image of the STM from the corrugation amplitude of a superperiodic pattern

that depends on a bias voltage. In this connection, the difference of the LDOS at the

surface, fj�total 0,0,0ð Þj2 � j�total L,0,0ð Þj2g, where the former and latter terms represent

the LDOS at the centre and the edge of an individual geometric pattern unit,

respectively, can give a simple diagnosis in mapping a superperiodic pattern because the

potential height is constant except for the edge part with a fine oscillation originating

from the Fourier analysis.
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Figure 15 shows the calculated LDOS in a 2L� 2L square of the individual
geometrical pattern unit at different graphene overlayer heights and varied bias
voltages. The extended and contracted nodes appear at the crossing points (x, y)¼ (
L,

L), (
L, 
L). At l¼ 1.5 (number of sheets s¼ 2), the difference of the LDOS
is enhanced with increasing the bias voltage from 0.02 to 0.3V, where the calculated
superperiodic patterns are net-shaped patterns with the extended nodes as clearly seen
in figures 15(a)–(d). This result is in excellent agreement with the experimental evidence
that the inverted superperiodic patterns (net-shaped patterns) are observed on the lower
terrace (two graphene sheets high from the substrate) near the step edge, as shown in
figures 12 and 13. Indeed, the increase of the corrugation amplitude in figures 12(a) and
13(a) can be understood on the basis of the increased difference of the LDOS because
the corrugation amplitude is roughly proportional to the LDOS, as mentioned above.
At l¼ 2.7 (s¼ 3), the difference of the LDOS decreases in increasing the bias voltage
from 0.02 to 0.40V, where the calculated superperiodic patterns become square-shaped
patterns with contracted nodes as shown in figures 15(e)–(g), although the pattern shape

Figure 15. The calculated LDOS in a 2L� 2L square (upper) and its cross-sectional profile passing through
the centre of the geometrical unit (lower) at different overlayer heights and bias voltages: (a) l¼ 1.5 (layer),
Vs¼ 0.02V, (b) l¼ 1.5, Vs¼ 0.30, (c) l¼ 1.5, Vs¼ 0.40, (d) l¼ 1.5, Vs¼ 0.50V, (e) l¼ 2.7, Vs¼ 0.02V,
(f) l¼ 2.7, Vs¼ 0.30V, (g) l¼ 2.7, Vs¼ 0.40V, and (h) l¼ 2.7, Vs¼ 0.50V. (Top pictures) Lighter brightness
indicates a higher LDOS value. (Bottom pictures) The x or y value in the lateral axis (unit : nm), the LDOS
in the vertical axis (arbitrary units). The number of sheets in the graphene overlayer is given as s¼ 2 and 3
for l¼ 1.5 and 2.7, respectively, after correction [47].
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(square shaped) is different from that of the experimental results (rhombic and
triangular shaped). By further increase in the bias voltage (0.4 to 0.5V), the difference
of the LDOS has a negative value with a net-shaped pattern with extended nodes in
figure 15(h). This result supports the experimental evidence that the corrugation
amplitude of the superperiodic pattern on the higher terrace (three graphene sheets high
from the substrate) decreases gradually and that the superperiodic pattern changes into
an inverted pattern with increasing the bias voltage further, as shown in figure 13.
Eventually, the observed superperiodic patterns can be explained by the dislocation
network at the interface and an interference in the graphene overlayer dependent on its
thickness and bias voltages.

5. Edge state in nanographene

According to the theoretical work mentioned in Section 2, the electronic structure of
nanographene depends on the shape of the edges. Around zigzag edges, we have a non-
bonding �-electron state (edge-state), in spite of the absence of such a state in armchair
edges [13–16]. The localized spins of the edge states have been revealed to show
unconventional nanomagnetism as well from theoretical and experimental approaches
[23–38]. In the meantime, it is of particular importance to confirm experimentally the
presence of the edge state and to clarify the correlation between the edge structure of
graphene sheets and the electronic feature of the edge state. STM/STS observations are
the most powerful tool for this purpose. Along this line of experimental works with
STM/STS, early investigations have been carried out with graphene sheets in the
ambient atmosphere [73–75]. Here, it should be noted that the graphite samples handled
in the ambient atmosphere have edges bonded to various oxygen-including functional
groups due to the oxidation of the edges or chemical species introduced in the sample
preparation process. The presence of various kinds of functional groups at the edges
modifies the electronic structure of the edge state depending on the electronic features
of these functional groups. Therefore, the employment of well defined edges is
particularly important to clarify the correlation between the edge structure and the
electronic feature of the edge state. In this sense, the hydrogen-terminated graphene
edges give us well defined edges which can be compared with the theoretical results.
Recent STM/STS works of well defined hydrogen-terminated edges have revealed
interesting electronic features of the edge state which depend on the detailed structures
of the edges. In this section, the experimental results are reviewed on the STM/STS
observations carried out under ultra-high vacuum (UHV) conditions with hydrogen-
terminated graphene edges [44, 45], which show clear STM images of zigzag and
armchair edges of graphene near the Fermi level, and STS curves in order to clarify the
relationship between the edge structure and the distribution of edge states.

As for STM/STS observations under UHV conditions (� 5� 10�11 torr), the HOPG
samples were heated at ca. 800�C to eliminate functional groups including oxygen in the
form of CO [76] immediately followed by exposure to atomic hydrogen to terminate the
edges of graphite in a UHV sample treatment chamber directly connected to the STM
observation chamber. The conditions for the hydrogenation of the edges were the same
as those for hydrogenation of the Si(100) surface to make a monohydride surface [77].
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Adsorbed contaminants on the edges and graphite surface can be removed by reaction
with pure hydrogen during the hydrogenation process. By several repeats of the heat
treatments and hydrogenation in the preparation chamber, the structure of the edges is
arranged due to the removal of hydrocarbons from hydrogen-terminated edges [78, 79].
The STM/STS measurements were carried out at room temperature.

The dispersion relation and 2D LDOS mapping were calculated using the tight-
binding approximation for AB-stacked double-sheet graphene. The first sheet
represents the top graphene sheet with edges and the second sheet represents the
graphite substrate. The resonance integral and the overlap integral were parametrized
using the Slater–Koster parameters [80] and were determined for the 2s and 2p orbitals
of carbon and the 1s orbital of hydrogen. The structural dependence of the parameters
was determined following [81]. For carbon–hydrogen bonding, the parameters of
hydrogen were fitted to reproduce the band structure of graphene strips with zigzag
edges obtained by a first-principles calculation with the local density approximation
[82, 83]. Several percentages of the displacements of carbon atoms near each edge were
neglected in the Hückel approximation. This makes the calculation tractable without
harming essential features in the density of states.

5.1. Edge state and the electronic structure of the graphene edges

The experimental results prove that zigzag edges are much shorter in length than
armchair edges and less frequently observed. This suggests that the structure of a zigzag
edge is energetically more unstable than that of an armchair edge, in good agreement
with theoretical results showing that the stability of an armchair edge is higher than that
of a zigzag edge in terms of the total energy [13, 84, 85]. A typical atomically-resolved
UHV STM image of hydrogenated graphene edge line that comprises of short zigzag
and armchair edge parts is shown in figure 16(a), in which the upper part is a zigzag
edge with armchair edges being in the centre and bottom parts. Figure 17 allows us
to understand the geometrical relation between armchair edges and zigzag edges.
Figure 16(a) clearly shows that the LDOS distribution is dependent on the edge
structures, which can be observed only for the samples with the edges hydrogen-
terminated under the UHV condition. The microscopy image at a low bias voltage
proves that the edge states are observed as bright spots at a homogeneous zigzag edge,
but they are not at armchair edges distant from zigzag edges. The observed image,
including the ð

ffiffiffi
3
p
�

ffiffiffi
3
p
ÞR30� superlattice, of homogeneous zigzag and armchair edges

can be reproduced using the calculated data in [74]. The image of armchair edges in
figure 16(a) is not homogeneous because the armchair edges are perturbed by the
adjacent zigzag edge and corner points. The STS data of figure 16(b) clearly verify the
presence of the edge states at the zigzag edge. In the figure, one peak at ca. �0.03V
corresponds to the density-of-states peak of the edge states, which are assigned to the
flat band near the Fermi level suggested in the theory in [15, 16]. Taking the rapid decay
of the LDOS (the brightness of the bright spots) from the edge to the interior of the
graphene sheet into consideration, the flat band of the edge states is associated mainly
with the k¼� state at the Brillouin zone boundary, because the LDOS for the k¼ 2�/3
state oscillates and does not decay [15, 16]. The origin of another peak at 0.2V in
figure 16(b) is attributed to charge transfer from the zigzag edge to physisorbed atoms
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or molecules. Taking into account the facts that the hydrogenation process and the
subsequent STS observation are not completely free of impurity species and that
the obtained STS data include few changes in relative position between the tip and the

sample due to the thermal drift, this interpretation is reasonable [73].
Figure 18(a) show atomically resolved UHV STM images of a part of long

homogeneous armchair edge line with edge carbon atoms completely hydrogenated.

This clearly indicates the absence of bright spots associated with edge states around the
armchair edge. In addition, the density of states obtained by the dI/dVS curve at the
armchair edge of figure 18(a) can be described only in terms of linear �- and �*-bands
with no contribution of the edge-state peak at the Fermi energy as shown in
figure 18(b). Here, the �- and �*-bands correspond to the contributions below and

above Vs¼ 0V, respectively, in the figure. These facts firmly demonstrate that the edge
states are not observed on the homogeneous armchair edge, in good agreement with
what the theory predicts [15, 16].

In contrast to the image of the homogeneous armchair edge, that of defective

armchair edges is obviously different as shown in figure 19(a). The defects in the image
consist of the sites from which four extra rows of carbon atoms are added to the
lower part of the armchair edge, as understood from the honeycomb lattice drawn in

figures 19(a). In other words, it is a partial zigzag edge of four edge carbon atoms

Figure 16. (a) An atomically-resolved UHV STM image of zigzag and armchair edges (9� 9 nm2) observed
in constant-height mode with bias voltage Vs¼ 0.02V and current I¼ 0.7 nA. (b) The dI/dVs curve from STS
data at a zigzag edge [44].
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embedded in the armchair edges. The origin of the bright points in figures 19(a) is
understood by looking at the LDOS of the defect points of the armchair edges.
Figure 19(b) shows the 2D mapping of the LDOS of the defect structure which is the
same as that observed in figure 19(a). The tight-binding approximation for AB-stacked
double-sheet graphene is applied for the analysis. From the calculated result, the centre
of the distribution of the relatively large LDOS corresponds to the partial zigzag edge
embedded between the armchair edges. Figure 19(b) shows a localized inclination of
edge electrons and it well reproduces isolated bright points, which are observed in
figure 19(a), at the partial zigzag edge. The figure also reproduces the ð

ffiffiffi
3
p
�

ffiffiffi
3
p
ÞR30�

superlattice near the defect points.

5.2. Effects of intersheet interaction, structural modification of the edge, and electron
confinement on the electronic features of the edge states

The features of the edge states vary depending on several factors, such as imperfection
of the edge structure, defects, intersheet interaction, structural modification of the

30°

Figure 17. Schematic model of zigzag and armchair edges that are made by cutting along dotted and dash-
dotted lines, respectively. Zigzag and armchair edges alternately appear by rotating a cut line by every 30�.
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Figure 18. (a) Atomically resolved UHV STM images (5.6� 5.6 nm2) of a homogeneous armchair edge in
constant-height mode with bias voltage Vs¼ 0.02V and current I¼ 0.7 nA. For clarity of edge structures, a
model of the honeycomb lattice is drawn on the image. (b) A dI/dVs curve from STS measurements taken at
the edge in (a) [44].

Figure 19. (a) Atomically resolved UHV STM images (5.6� 5.6 nm2) of an armchair edge with defect
points. The defect consists of a partial zigzag edge having four edge carbon atoms embedded in the armchair
edges. (b) 2D mappings of the LDOS that reproduce the observed STM images of (a) using a tight-binding
approximation for AB-stacked double-sheet graphene. The dimension of the circle on each lattice point
denotes the relative value of the LDOS that is accumulated in the range of 50meV near the Fermi level [44].
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zigzag edges, electron confinement effect, etc. We have already suggested the effects of

the imperfection and defects in the last section. As we discussed in Section 3.1, the

intersheet interaction, whose strength (�1¼ 0.39 eV) is about one order of magnitude

smaller than that of the intra-sheet interaction (�0¼ 3.16 eV) [48]. Therefore, the

intersheet interaction is expected to contribute to modifying the electronic feature of

the edge state. Structural modifications of the edges are also important in the change of

the edge states, according to theoretical suggestion. Indeed, Klein and Kusakabe prove

that the distribution of the LDOS is strongly modified by adding extra �-conjugated
carbon atoms bonded to the edge carbon atoms at the zigzag edge [21–24]. In the

meantime, finite-length zigzag edges or armchair edges are affected by the adjacent

armchair or zigzag edges. Electron confinement effects in a finite system and state

mixing between zigzag and armchair edges are among the important phenomena

appearing in finite size systems. Here, we discuss the variety of the electronic structures

of the edge states as shown above.
The first example is the intersheet interaction affecting the feature of the edge state.

Figure 20 presents a typical image observed at an edge whose mean direction runs along

a zigzag direction of the top graphene sheet. By applying the relationship shown in

figure 17 to the image of figure 20, we can assign the parts of the edge to armchair or

zigzag. In figure 20, there are two types of partial zigzag edges termed ‘Z1’ and ‘Z2’,

whose directions are tilted by 60� and 0� with respect to the mean edge direction,

respectively. There are some differences in the observed distributions of bright spots

between the ‘Z1’ and ‘Z2’ zigzag edges. The edge carbon atoms of the ‘Z1’ edge are

Figure 20. STM image (14.8� 13.4 nm2) of a graphene edge that runs in the zigzag direction. The edge
consists of a combination of zigzag and armchair edges. Labels ‘Z1’ and ‘Z2’ denote partial zigzag edges that
run in different directions, and label ‘A’ denotes a partial armchair edge. The contour of the edge is drawn in
parallel to the edge for clarifying positions and angles of the partial zigzag and armchair edges [45].
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brighter than those of the ‘Z2’ edge. In addition to this, the bright spots of the ‘Z1’ edge
are limited only to the vicinity of the edge carbon atoms and their neighbouring sites,

whereas the bright spots of the ‘Z2’ edge are extended to the interior of the sheet.
The origin of the difference in the distributions of the observed bright spots can be

understood by the schematic model in figure 21(a), in which the stacking nature of
graphite is taken into account, and two types of zigzag edges are connected with each

other with an angle of 60�. The geometric relation in figure 21(a) is constructed to

extract the relation of the ‘Z1’ and ‘Z2’ edges in figure 20. The relation in figure 21(a)

indicates that the edge carbon atoms at the top right and the bottom correspond to
�- and �-site carbon atoms, respectively. For the calculation of the LDOS to be

compared with the experimental result in figure 20, a model is constructed as shown in

figure 21(b). In this model, the two types of zigzag edges have the same geometrical
relation as that in figure 21(a), except that the presence of an armchair edge between the

two zigzag edges decreases the overlap of the edge states between the two types of zigzag

edges. In figure 22, the LDOS at each �-site (�-site) carbon atom in the rectangles in

figure 21(b) is plotted as a function of the position of the �-site (�-site) carbon atom
from the �-site (�-site) edge carbon atom to the interior of the graphene sheet. The

LDOS shows a decay from the edge to the interior with an oscillation that comes from a

superperiodic pattern near the edges. Figure 22 reveals a clear difference in the LDOS

distributions at the partial zigzag edges terminated by the �- and �-site carbon atoms.
The magnitudes of the LDOS of the edge carbon atoms at � sites are larger than those

at � sites. The LDOS whose edge carbon atoms are assigned to the � site decays rapidly

to the interior of the sheet, whereas that of the � sites decays slowly. In other words, the
LDOS is more localized at the zigzag edge of � sites, in contrast to the extended feature

in that of � sites. These results qualitatively reproduce the distribution of the bright

spots in figure 20. With this excellent agreement of the characters between the observed

and calculated results, the edge carbon atoms of the ‘Z1’ and the ‘Z2’ edges correspond
to the �- and �-site carbon atoms, respectively.

The modifications of graphene edges also change the electronic feature of the edge

state. The simplest modification can be made by changing a monohyrogenated

edge carbon atom to a dihydrogenated one by adding an extra hydrogen atom to the
edge carbon atom. This change reminds us of the difference between a monohy-

drogenated zigzag edge (Fujita edge) and a Klein edge. Figure 23 presents an example

of this modification; the STM image shows an armchair edge with a defect from which

two rows of extra carbon atoms are added to the lower region of the armchair edge. An
array of bright spots, whose brightness decreases monotonically toward the interior of

the sheet along a line with an angle of 120� from the direction of the armchair edge, is

observed near the defect point in figure 23. The image is compared to the spatial
distribution of the LDOS calculated by the tight-binding method with the same

geometry as that of the lattice experimentally observed, as shown in figure 24(a). A

comparison demonstrates that the LDOS mapping fails to reproduce the direction of

the array of bright spots in the observed STM image. Indeed, the array of the calculated
LDOS runs along a line with an angle of 60� from the direction of the armchair edge, in

disagreement with that observed.
Here, we note the difference in the stacking structures, which is an excellent

explanation for the case of figure 20. However, the difference between the stacking
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structures, that is, the difference of � or � site at the defect point or the difference
between AA and AB stackings, is not a candidate for the origin of this disagreement,
because the observed difference cannot be reproduced on the basis of the calculations
with the difference of the � or � site. The difference that originates from the local

Figure 21. (a) Schematic model of AB-stacked double-sheet graphene that forms two types of zigzag edges
whose edge carbon atoms belong to � or � sites. The angle between the two types of zigzag edges is 60�.
Honeycomb lattices drawn by solid and dotted lines represent the top and second sheets, respectively. (b) 2D
mapping of the LDOS of a graphene sheet having interconnected two partial zigzag edges whose directions
differ by 60� from each other. They are separated with an armchair edge region to avoid interference between
the edge states of the two partial zigzag edges. Each zigzag edge in the model consists of four edge carbon
atoms. The �-site (�-site) edge carbon atoms of partial zigzag edges exist at top right (bottom) part. The
LDOS of �-site and �-site carbon atoms in the rectangles are plotted in figure 22 [45].
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stacking structure can create only a difference in the magnitudes of the LDOS like in the
case of figure 21(b) and do not give any difference in the direction of an array with a
relatively large LDOS. Hence, the origin of the difference in the direction of the array of
bright spots may come from the difference in the detailed edge carbon structure that
cannot be clearly distinguished by the STM observation. The origin of the difference
may be associated with the presence of an extra carbon atom that is bonded to the edge
carbon atom in the sample preparation process, for example. The smallest structural
difference at the defect point can be made by the presence or absence of extra one
carbon atom bonded to the edge carbon atom; that is, the presence or absence of a
Klein edge at the defect. Figure 24(b) is the calculated result based on the model that
has the same geometric structure as that of figure 24(a) except that an extra carbon
atom is attached to the partial zigzag edge. Figure 24(b) well reproduces the array of

Figure 22. Plots of the LDOS in the rectangles numbered in figure 21(b) as a function of �-site (�-site)
carbon atoms from the �-site (�-site) edge carbon atoms to the interior of the sheet. Solid lines are the guides
for the eyes [45].
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bright spots in figure 23. The direction of an array of the LDOS of figure 24(b) is 120�

from the direction of the armchair edge and is changed by 60� from that of figure 24(a)
by the presence of a Klein edge.

The final discussion is devoted to the electron confinement effect in a finite length
zigzag edge. Figure 25(a) shows an STM image of a zigzag edge which consists of seven
edge carbon atoms. In this image, the bright spot that represents the edge state is absent
at the centre of the zigzag edge, although bright spots at other edge carbon atoms in the
zigzag edge prove the presence of the edge state. The absence of bright spots is always
detected in a zigzag edge that is longer than that in figure 25(a). In the calculated result
in figure 25(b) of the zigzag edge structure similar to that in the observed edge, the
LDOS at the centre part of the partial zigzag edge is very small although the atomic
structure does not have any vacancy in the edge. This is because the smallest LDOS in
the edges corresponds to the node of the wavefunction of an electron that is confined
in the finite length zigzag edge having an odd number of edge carbon atoms.

Figure 24. (a) 2D mapping of the LDOS at the defect point of the armchair edge, which corresponds to the
image in figure 23. (b) 2D mapping of the LDOS of the edge structure same as (a) except that an extra carbon
atom, which is drawn as a bar, is attached to an edge carbon atom of the partial zigzag edge. Arrows indicate
the direction of the array of large LDOS (bright spots) [45].

Figure 23. STM image (4.5� 4.5 nm2) of an armchair edge with a defect from which two rows of carbon
atoms are added to the lower region of the armchair edge. In the left panel, a honeycomb lattice is overlaid on
the original image in the right panel for clarifying the location of the defect. An array of bright spots is
observed at around the defect point, and its direction and the angle measured from the direction of the
armchair edge is drawn in the left panel [45].
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6. Conclusion

Nanographene, which is a nanosized system of graphene, is one of the important

partners in �-electron-based nanocarbon family, in which fullerenes, carbon nanotubes

and graphene are involved. In contrast to fullerenes, carbon nanotubes and graphene,

which have a closed �-electron system with no edges or have a minor contribution of

the edges, nanographene has the electronic structure of an open �-electron system due

to the presence of open edges. The circumference of an arbitrary-shaped nanographene

is described in terms of a combination of zigzag and armchair edges. Theoretical

investigations demonstrate the formation of a non-bonding � -state (edge state) at a

zigzag edge, in spite of the absence of such a state in an armchair edge. The edge state is

relevant to the non-bonding �-state appearing at the Fermi level in non-Kekulé-type

condensed polycyclic aromatic hydrocarbon molecules. The edge states are localized

around the edge carbon atoms in the zigzag edge, giving localized spins. Therefore, the

edge state is of particular interest from the point of producing carbon-only molecular

magnetism in nanosystems. Indeed, according to theoretical and experimental works,

ferromagnetism can be created in the edge-state spins in nanographene ribbons having

modified zigzag edges.
Nanographene can be prepared by heat-induced conversion of nanodiamond

particles on a HOPG substrate, on which the particles are seeded in a controlled

manner using an electrophoretic technique. Nanographene ribbons are found by chance

around step edges of graphite. Individual nanographene ribbons can be structurally

characterized by a combination of AFM and resonance Raman spectroscopy.
The finiteness in size of nanographene brings about interference phenomena of the

wavefunction due to the electron confinement effect. A nanographene sheet inclined

along a direction is found to show an interference superperiodic pattern with a varying

periodicity. The stacking of sheets also gives an interference effect on the dislocation

network created by rhombohedral stacking faults.

Figure 25. (a) STM image (3.8� 3.8 nm2) of a zigzag edge consisting of seven edge carbon atoms. The arrow
indicates a very small LDOS at the centre of the zigzag edge. (b) 2D mapping of the LDOS at a zigzag edge
whose structure is the same as that in (a) [45].
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Microprobe techniques of STM/STS provide a powerful tool for investigating the
correlation between the electronic and structural features of nanographene edges at
atomic resolution, when the edges are well defined by hydrogenation of edge carbon
atoms. The experimental observations demonstrate that armchair edges are generally
long and defect free, whereas zigzag edges tend to be short and defective. This proves
that the zigzag edges which have non-bonding edge states at the Fermi level are
energetically unstable in comparison with armchair edges, in good agreement with
theoretical prediction. STM/STS experiments confirms the presence of edge states well
localized around the edge carbon atoms in zigzag edges, while no edge state appears in
armchair edges. The features of the edge states depend on the detailed structure of
edges. The edge state in a short zigzag edge embedded between armchair edges is
affected by state mixing which makes the LDOS of the edge state extended toward the
interior of the nanographene sheet. The edge state in a short length zigzag edge is
subjected to the electron confinement effect, showing a node of the wavefunction at the
centre of the zigzag edge. It is also affected by the intersheet interaction. Indeed, the
spatial distribution of the LDOS of the edge state varies depending on the geometry of
the site in the sheet stacking between �- and �-sites.

Nanographene having a desirable shape is obtained theoretically by cutting a
graphene sheet along the direction which is intentionally determined. In addition,
chemical modifications of edge carbon atoms vary the electronic and magnetic features
of edge states. For example, monohyrogenation of the edge carbon atoms in a zigzag
edge gives itinerant magnetism, while dihydorgenation brings about localized features
in the magnetism. Fluorination makes magnetism disappear. The termination of edge
carbon atoms with oxygen atoms makes zigzag edges electrically conductive. The future
development of electron lithography with atomic resolution in combination with
chemical modifications is expected to give well defined edges having a variety of
electronic and magnetic functions. Nanographene is more easily tailored than fullerenes
and carbon nanotubes. In this sense, nanographene is a future promising target material
in the development of molecular spintronics/electronics devices in nanotechnology.
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[19] D. Jiang, B. G. Sumpter, and S. Dai, J. Chem. Phys. 126, 134701 (2007).
[20] K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev. Lett. 99, 036601 (2007).
[21] D. J. Klein, Chem. Phys. Lett. 217, 261 (1994).
[22] D. J. Klein and L. Bytautas, J. Phys. Chem. A 103, 5196 (1999).
[23] K. Kusakabe and M. Maruyama, Phys. Rev. B67, 092406 (R) (2003).
[24] M. Maruyama and K. Kusakabe, J. Phys. Soc. Jpn. 73, 656 (2004).
[25] Y.-W. Son, M. L. Cohen, and G. Louie, Nature 444, 347 (2006).
[26] T. Enoki and Y. Kobayashi, J. Mater. Chem. 15, 3999 (2005).
[27] T. Enoki and K. Takai, Carbon-Based Magnetism: An Overview of the Magnetism of Metal Free

Carbon-Based Compounds and Materials, F. Palacio and T. Makorova, eds., Elsevier Science, 397
(2006).

[28] Y. Shibayama, H. Sato, T. Enoki, X. X. Bi, M. S. Dresselhaus, and M. Endo, J. Phys. Soc. Jpn. 69, 754
(2000).

[29] Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000).
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